0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load707(x1, x2, x3, x4) → Load707(x2, x3, x4)
Cond_Load707(x1, x2, x3, x4, x5) → Cond_Load707(x1, x3, x4, x5)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i51[0] →* i51[1])∧(i55[0] →* i55[1])∧(i55[0] > 0 && i51[0] >= i55[0] →* TRUE)∧(i53[0] →* i53[1]))
(1) -> (0), if ((i51[1] - i55[1] →* i51[0])∧(i53[1] + 1 →* i53[0])∧(i55[1] →* i55[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i51[0] →* i51[1])∧(i55[0] →* i55[1])∧(i55[0] > 0 && i51[0] >= i55[0] →* TRUE)∧(i53[0] →* i53[1]))
(1) -> (0), if ((i51[1] - i55[1] →* i51[0])∧(i53[1] + 1 →* i53[0])∧(i55[1] →* i55[0]))
(1) (i51[0]=i51[1]∧i55[0]=i55[1]∧&&(>(i55[0], 0), >=(i51[0], i55[0]))=TRUE∧i53[0]=i53[1] ⇒ LOAD707(i51[0], i55[0], i53[0])≥NonInfC∧LOAD707(i51[0], i55[0], i53[0])≥COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])∧(UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥))
(2) (>(i55[0], 0)=TRUE∧>=(i51[0], i55[0])=TRUE ⇒ LOAD707(i51[0], i55[0], i53[0])≥NonInfC∧LOAD707(i51[0], i55[0], i53[0])≥COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])∧(UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥))
(3) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i55[0] + [bni_15]i51[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(4) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i55[0] + [bni_15]i51[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(5) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i55[0] + [bni_15]i51[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(6) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i55[0] + [bni_15]i51[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(7) (i55[0] ≥ 0∧i51[0] + [-1] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥)∧0 = 0∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i55[0] + [bni_15]i51[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(8) (i55[0] ≥ 0∧i51[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i51[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(9) (i51[0]=i51[1]∧i55[0]=i55[1]∧&&(>(i55[0], 0), >=(i51[0], i55[0]))=TRUE∧i53[0]=i53[1]∧-(i51[1], i55[1])=i51[0]1∧+(i53[1], 1)=i53[0]1∧i55[1]=i55[0]1 ⇒ COND_LOAD707(TRUE, i51[1], i55[1], i53[1])≥NonInfC∧COND_LOAD707(TRUE, i51[1], i55[1], i53[1])≥LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))∧(UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥))
(10) (>(i55[0], 0)=TRUE∧>=(i51[0], i55[0])=TRUE ⇒ COND_LOAD707(TRUE, i51[0], i55[0], i53[0])≥NonInfC∧COND_LOAD707(TRUE, i51[0], i55[0], i53[0])≥LOAD707(-(i51[0], i55[0]), i55[0], +(i53[0], 1))∧(UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥))
(11) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i55[0] + [bni_17]i51[0] ≥ 0∧[(-1)bso_18] + i55[0] ≥ 0)
(12) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i55[0] + [bni_17]i51[0] ≥ 0∧[(-1)bso_18] + i55[0] ≥ 0)
(13) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i55[0] + [bni_17]i51[0] ≥ 0∧[(-1)bso_18] + i55[0] ≥ 0)
(14) (i55[0] + [-1] ≥ 0∧i51[0] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i55[0] + [bni_17]i51[0] ≥ 0∧0 = 0∧[(-1)bso_18] + i55[0] ≥ 0)
(15) (i55[0] ≥ 0∧i51[0] + [-1] + [-1]i55[0] ≥ 0 ⇒ (UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥)∧0 = 0∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i55[0] + [bni_17]i51[0] ≥ 0∧0 = 0∧[1 + (-1)bso_18] + i55[0] ≥ 0)
(16) (i55[0] ≥ 0∧i51[0] ≥ 0 ⇒ (UIncreasing(LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i51[0] ≥ 0∧0 = 0∧[1 + (-1)bso_18] + i55[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD707(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(COND_LOAD707(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(>=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_LOAD707(TRUE, i51[1], i55[1], i53[1]) → LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))
LOAD707(i51[0], i55[0], i53[0]) → COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])
COND_LOAD707(TRUE, i51[1], i55[1], i53[1]) → LOAD707(-(i51[1], i55[1]), i55[1], +(i53[1], 1))
LOAD707(i51[0], i55[0], i53[0]) → COND_LOAD707(&&(>(i55[0], 0), >=(i51[0], i55[0])), i51[0], i55[0], i53[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |